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ABSTRACT

Accurate and reliable whole-brain segmentation is critical to longitudinal neuroimaging studies. We undertake a comparative analysis of two subcortical segmentation
methods, Automatic Segmentation (ASEG) and Sequence Adaptive Multimodal Segmentation (SAMSEG), recently provided in the open-source neuroimaging package
FreeSurfer 7.1, with regard to reliability, bias, sensitivity to detect longitudinal change, and diagnostic sensitivity to Alzheimer’s disease. First, we assess intra- and
inter-scanner reliability for eight bilateral subcortical structures: amygdala, caudate, hippocampus, lateral ventricles, nucleus accumbens, pallidum, putamen and
thalamus. For intra-scanner analysis we use a large sample of participants (n = 1629) distributed across the lifespan (age range = 4-93 years) and acquired on a 1.5T
Siemens Avanto (n = 774) and a 3T Siemens Skyra (n = 855) scanners. For inter-scanner analysis we use a sample of 24 participants scanned on the day with three
models of Siemens scanners: 1.5T Avanto, 3T Skyra and 3T Prisma. Second, we test how each method detects volumetric age change using longitudinal follow up
scans (n = 491 for Avanto and n = 245 for Skyra; interscan interval = 1-10 years). Finally, we test sensitivity to clinically relevant change. We compare annual rate
of hippocampal atrophy in cognitively normal older adults (n = 20), patients with mild cognitive impairment (n = 20) and Alzheimer’s disease (n = 20). We find
that both ASEG and SAMSEG are reliable and lead to the detection of within-person longitudinal change, although with notable differences between age-trajectories
for most structures, including hippocampus and amygdala. In summary, SAMSEG yields significantly lower differences between repeated measures for intra- and
inter-scanner analysis without compromising sensitivity to changes and demonstrating ability to detect clinically relevant longitudinal changes.

1. Introduction

Automated techniques for whole-brain segmentation have become
extremely useful in the study of a range of brain diseases and con-
ditions, such as Alzheimer’s disease (AD) (Chételat, 2018), and also
normal changes such as in development (Ostby et al., 2009) and ag-
ing (Wonderlick et al., 2009). Automated techniques enable process-
ing of large numbers of magnetic resonance imaging (MRI) scans with
limited operator investments, enabling detailed segmentations of brains
from large-scale brain imaging initiatives. One of the most extensively
used whole-brain segmentation approaches is Automatic Segmenta-
tion (ASEG) (Fischl et al., 2002), distributed as part of FreeSurfer
(http://freesurfer.net/) (Fischl, 2012). FreeSurfer ASEG is a core tool
in large-scale neuroimaging projects such as the UK Biobank (~ 40.000
scans to date) (Alfaro-Almagro et al., 2018), ABCD (= 10.000 scans
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to date) (Hagler et al., 2019), ADNI (> 20.000 scans) (Jack et al.,
2008), ENIGMA (> 50.000 scans) (Thompson et al., 2020), and Lifebrain
~ 10.000 scans) (Walhovd et al., 2018). Although the accuracy of
automated segmentation techniques such as ASEG is generally high
and enables detection of longitudinal changes (Mulder et al., 2014;
Worker et al., 2018), reports have suggested that segmentation accuracy
may vary as a function of variables such as age (Wenger et al., 2014)
and brain size (Herten et al., 2019; Schoemaker et al., 2016). Hence,
continued efforts are undertaken to improve accuracy and reduce bias
in the segmentations.

Similar to many other current whole-brain segmentation techniques,
ASEG is based on supervised models of T1-weighted images. As sig-
nal intensities alone are not sufficient to distinguish between different
neuroanatomical structures from a T1-weighted MRI, an atlas contain-
ing probabilistic information about the location of structures is used to
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determine the relationship between intensities and neuroanatomical la-
bels in particular regions of the brain. The probabilistic atlas is generated
from a set of manually labeled training images. The segmentation prob-
lem is then solved in a Bayesian framework in which local shape, posi-
tion and appearance all contribute to the probability of a given label. Re-
cently, an alternative approach was suggested - Sequence Adaptive Mul-
timodal Segmentation (SAMSEG) — which uses generative parametric
models (Puonti et al., 2013, 2016). Unlike ASEG, SAMSEG uses a mesh-
based computational atlas combined with a Gaussian appearance model
to achieve independence of specific image contrast by grouping together
voxels with similar intensities (Van Leemput, 2009). SAMSEG is less
computationally demanding than other iterative segmentation methods
since no preprocessing is needed and only a single, efficient non-linear
registration of the atlas to the target image is required. Moreover, bias
field estimation and correction are done simultaneous with segmenta-
tion and non-linear registration. Nevertheless, SAMSEG resulted in ac-
curacy comparable to ASEG and three other state-of-the-art methods in
segmenting T1-weighted MRIs (Puonti et al., 2016). Since SAMSEG does
not rely on the specific intensity profiles of a separate training data set,
it yields consistent segmentations across scanner platforms and pulse
sequences. SAMSEG is included as part of the recent FreeSurfer 7.1 re-
lease (released May 11th, 2020), which enables its general use in the
neuroimaging community. Therefore, a thorough analysis is necessary
to direct the choice between these two utilities provided in the same
widely used package of FreeSurfer.

In the present study we undertake a thorough comparative anal-
ysis of SAMSEG and ASEG in terms of reliability, bias, sensitivity to
longitudinal change, and clinical sensitivity. Longitudinal SAMSEG is
used in the present study, which was not available at the time of the
Puonti et al. (2016) study. First, we assess intra- and inter- scanner reli-
ability. Second, since higher reliability could come at the cost of lower
sensitivity to biologically meaningful change, we test how ASEG and
SAMSEG are able to detect neuroanatomic volumetric change in longi-
tudinal follow up scans. Finally, we test how sensitive each method is to
clinically relevant change by comparing the annual rate of hippocam-
pal atrophy in a group of cognitively normal older adults (CN), patients
with mild cognitive impairment (MCI) and patients with AD.

2. Materials and methods
2.1. Datasets

2.1.1. Lifespan scan-rescan dataset

We use scan-rescan dataset selected from several ongoing projects
at the Center for Lifespan Changes in Brain and Cognition (LCBC), Uni-
versity of Oslo, approved by the Regional Committees for Medical and
Health Research Ethics South of Norway. Participants were cognitively
healthy, and all participants or their guardian provided informed con-
sent (for details, see e.g. (Walhovd et al., 2016)). Images were acquired
using two models of Siemens MRI scanners (Siemens Medical Solutions,
Erlangen, Germany) - 1.5T Avanto and 3T Skyra, at Rikshospitalet, Oslo
University Hospital. A total of 890 participants (1643 sessions) and 887
participants (1739 sessions) were included in the initial within-session
scan-rescan datasets for Avanto and Skyra scanners respectively. All
images were visually inspected for motion artefacts, and sessions that
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Fig. 1. Examples of visual exclusion criterion.
Left panel shows motion-free normal looking
brains; center and right panels show images
that have visible motion artefacts.

Avanto Skyra

120 4

Count

Fig. 2. Age distributions of Avanto and Skyra datasets.

had two images of no visual appearance of motion were included in
further analysis. Fig. 1 illustrates examples of exclusion criterion. Af-
ter discarding images with insufficient quality, the samples were re-
duced to 774 participants (427 females; 1362 sessions; age range = 4-93
years) for Avanto and 855 participants (563 females; 1646 sessions; age
range = 14-84 years) for Skyra. Fig 2 summarizes age distributions of
each scanner dataset. All data was acquired using Magnetization Pre-
pared Rapid Gradient Echo (MPRAGE) sequence with parameters sum-
marized in Table 1. The parameters for the scan-rescan datasets dif-
fered between the scanners but were identical for each session on the
same scanner, except for the Skyra dataset where one image was ac-
quired using parallel acquisition factor GRAPPA=1 and rescanned with
GRAPPA=2. To acquire data with optimal comparability within each
scanner, participants remained in the same position between scan and
rescan acquisitions.

2.1.2. Inter-scanner dataset

For inter-scanner dataset, we use a sample of 24 participants (19 fe-
males, age range between 20 and 36 years) scanned with three models of
Siemens MRI scanners (Siemens Medical Solutions, Erlangen, Germany)



D. Sederevicius, D. Vidal-Pifieiro, @. Sgrensen et al.

Table 1

A summary of MRI T1w MPRAGE acquisition parameters used for the LCBC
intra- and inter-scanner datasets. For Skyra, a GRAPPA factor of 1 is used
for inter-scanner analysis but 1 and 2 for intra-scanner analysis. Data of
Prisma scanner is only used for inter-scanner analysis.

Avanto Skyra Prisma
Field strength (T) 1.5 3 3
#slices 160 176 208
FoV (mm?) 240 x 240 256 x 256 240 x 256
TR (ms) 2400 2300 2400
TE (ms) 3.61 2.98 2.22
TI (ms) 1000 850 1000
FA (°) 8 8 8
Voxel size (mm?) 125 x 1.25 x 1.2 1x1x1 0.8 x 0.8 x 0.8
Bandwidth (Hz) 180 240 220
GRAPPA 1 1(2) 2
Head coil channels 12 20 32

on the same day - 1.5T Avanto, 3T Skyra and 3T Prisma, at Rikshos-
pitalet, Oslo University Hospital. Table 1 summarizes MRI T1lw pulse
sequence parameters of each scanner.

2.1.3. Lifespan longitudinal datasets

For longitudinal LCBC datasets, we select participants from the scan-
rescan dataset who also have a follow-up visit: 491 participants of the
Avanto scanner and 245 participants of the Skyra scanner. Each partic-
ipant has two visits with the follow-up ranging from 1 to 10 years for
the Avanto dataset and 1 to 5 years for the Skyra dataset.

2.1.4. Clinical sensitivity dataset

In addition to the longitudinal LCBC datasets, we also include scans
from the Alzheimer’s disease Neuroimaging Initiative (ADNI) database
(adni.loni.usc.edu). The ADNI was launched in 2003 as a public-private
partnership, led by Principal Investigator Michael W. Weiner, MD. The
primary goal of ADNI has been to test whether serial MRI, positron emis-
sion tomography, other biological makers, and clinical and neuropsy-
chological assessment can be combined to measure the progression of
MCI and early AD. For up-to-date information, see www.adni-info.org.
For our study, we randomly select three groups of participants with sim-
ilar age distributions: CN, MCI and AD. Each group consist of 20 partic-
ipants. The selected sample of ADNI data has been acquired at different
sites using a Siemens Avanto 1.5T MRI scanner and MPRAGE sequence:
TR = 2400 ms, TE = 3.54 ms, TI = 1000 ms, flip angle = 8°, voxel
size = 1.25 x 1.25 x 1.2 mm3, 192 x 192 acquisition matrix, 160 slices,
180 Hz pixel bandwidth, GRAPPA = 1, 8 channel matrix coil. Each par-
ticipant has two visits with a follow-up ranging from 6 months to 2 years
for each group.

2.3. MRI processing

Due to the non-linearity of the magnetic fields from the imaging gra-
dient coils, we first preprocess images to reduce geometrical variability
of the same participants’ brains between sessions. This is achieved by ob-
taining scanner-specific spherical harmonics expansions that represent
the gradient coils (Jovicich et al., 2006).

We use two fully automated subcortical segmentation methods
FreeSurfer v7.1 ASEG and SAMSEG to process MRI data and measure
volumes of eight bilateral brain structures of interest: amygdala, cau-
date, hippocampus, lateral ventricles, nucleus accumbens, pallidum,
putamen and thalamus. Briefly, the FreeSurfer ASEG pipeline includes
Talairach transformation, intensity correction, the removal of nonbrain
tissues and volumetric brain segmentation based upon the existence of
an atlas containing information on the location of structures, whereas
SAMSEG utilizes a mesh-based atlas and a Bayesian modeling framework
to obtain volumetric segmentations without the need for skull-stripping.
Moreover, SAMSEG does the bias field estimation and correction simul-
taneous with segmentation and non-linear registration which is not the
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case for ASEG where each step is performed separately. Both methods
are fully automated and model-based that use a pre-built probabilistic
atlas prior from 39 to 20 subjects, respectively. The 20 subjects used for
SAMSEG are a subset of the 39 used for ASEG.

To extract reliable volume estimates, we process all datasets with
the longitudinal stream in FreeSurfer ASEG and SAMSEG. For FreeSurfer
ASEG, an unbiased within-subject template space and image (Reuter and
Fischl, 2011) is created using robust, inverse consistent registration
(Reuter et al., 2010). Several processing steps, such as skull stripping,
Talairach transforms, atlas registration, and spherical surface maps and
parcellations are then initialized with common information from the
within-subject template, significantly increasing reliability and statis-
tical power (Reuter et al., 2012). Longitudinal SAMSEG is based on a
generative model of longitudinal data (Iglesias et al., 2016). In the for-
ward model, a subject-specific atlas is obtained by generating a random
warp from the usual population atlas, and subsequently each time point
is again randomly warped from this subject-specific atlas. Bayesian in-
ference is used to obtain the most likely segmentations, with the inter-
mediate subject-specific atlas playing the role of latent variable in the
model, whose function is to ensure that various time points have atlas
warps that are similar between themselves, without having to define a
priori what these warps should be similar to.

2.4. Statistical analysis

2.4.1. Scan-rescan reliability

We use multiple statistical approaches to describe and evaluate the
magnitude of intra- and inter-scanner variability between repeated mea-
surements. We calculate the absolute symmetrized percent difference
(ASPD) as follows:

2|V(L1) - V(Lz)‘

ASPD(L,. L,) = VL)t V(L)

x 100%,

where L, and L, are the segmented labels of the same structure but
of different images and V(L) is the volume of the label. ASPD value
of O indicates a perfect replicability, with increasing values indicat-
ing less reliable repeated measurements. We use Generalized additive
models (GAM) (Wood, 2017) to characterize volume estimation vari-
ability trends of subcortical structures across the lifespan. GAMs are
generalized linear models in which the predictors depend linearly or
non-linearly on some smooth non-linear functions (Hastie and Tibshi-
rani, 1990). The smooth functions are estimated from the data and en-
able a flexible smooth curve fitting across the lifespan. In addition to
ASPD, we also calculate Dice scores (Dice, 1945), intraclass correlation
coefficients (ICC) (McGraw and Wong, 1996; Koo and Li, 2016) and
Bland-Altman plots (Bland and Altman, 1986). For ICC we use a 2-way
mixed-effects model, single measurement and absolute agreement ICC
form.

2.4.2. Sensitivity to longitudinal change

First, to assess whether the estimated lifespan trajectories of the sub-
cortical volumes differ depending on segmentation method, we use Gen-
eral Additive Mixed Models (GAMM) (Wood, 2017). In contrast to GAMs
which treat each observation as independent, GAMMs take longitudinal
information into account by explicitly modeling the correlation between
repeated measurements of the same subject, yielding a model which
captures cross-sectional and longitudinal information. Second, to assess
longitudinal changes, we use the annualized percentage change (APC)
values between the baseline and the follow-up visits for all participants
with two scans separated by one or more years. We compare APC values
for each segmentation method with paired samples t-tests. We divide the
sample into development (< 20 years), adulthood (between 20 and 60
years) and aging (> 60 years) and compare APCs across age groups us-
ing t-tests and Cohen’s D. Cohen’s D is an effect size used to indicate the
standardized difference between two means. Third, to address the clin-
ical sensitivity of each segmentation method, we compute APC for the
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Fig. 3. ASPC values across the lifespan for the Avanto dataset. Age-related trends are shown by the GAM curves.

hippocampus for ADNI subjects, and assess differences in APC between
groups (NC vs. MCI vs. AD) using Cohen’s D. Finally, we use Receiver
Operating Characteristic (ROC) curves and Area Under the Curve (AUC)
to address the classification sensitivity based on the APC values of the
longitudinal hippocampus estimates in different groups.

All statistical analyses described above is done using R statistical soft-
ware package v3.6.3 (R Core Team, 2020) and its related packages: mgcy
(Wood, 2017), ggplot2 (Wickham, 2016), ggpubr (Kassambara, 2020),
cowplot (Wilke, 2019), irr (Gamer et al., 2019), effsize (Torchiano, 2020)
and dplyr (Wickham et al., 2020).

3. Results
3.1. Scan-rescan reliability

Fig. 3 and Fig. 4 show volume estimation differences between re-
peated intra-scanner acquisitions across the lifespan for the Avanto and
Skyra datasets respectively. Although most of the subcortical structures
indicate relatively flat lifespan trends, small deviations are observed
in the Avanto dataset for the young children group (age < 10 years)
when using ASEG. This is not present in the Skyra dataset as it does not
include this age group. SAMSEG volumetric estimates are significantly
lower (paired samples t-test, p < 0.05) for both datasets and all struc-
tures across the lifespan, see appendix (Table A.1) for summary statistics
which also indicate lower standard deviations for SAMSEG.

Fig. 5 and Fig. 6 indicate spatial overlap similarity in terms of dice
scores for the Avanto and Skyra datasets respectively. Most of the struc-
tures show inverted u-shape trajectories except the lateral ventricles
which demonstrate almost linearly increasing reliability with aging.
ASEG yields significantly higher spatial agreement for putamen whereas
the rest of the spatial overlaps are significantly better for SAMSEG
(paired samples t-test, p < 0.01). The largest improvements are demon-
strated for amygdala, pallidum and nucleus accumbens. In general, all
Dice scores are high for both the segmentation methods indicating a
good spatial agreement between segmented volumes.

We also compute ICC to assess the agreement between the repeated
measurements for each scanner dataset and segmentation method. Al-
though we find the reliability of the repeated measurements very high
(ICC > 0.95) for both methods, SAMSEG results in significantly higher (p
< 0.01) ICC values for all subcortical structures. Bland-Altman plots of
both methods do not indicate bias towards the estimated structure size,
see appendix (Fig. A.1 and Fig. A.2). However, despite consistent volu-
metric estimations regardless of the structure size, the limits of agree-
ment (average difference + 1.96 standard deviation of the difference) are
in favor of SAMSEG.

3.2. Inter-scanner differences

In Fig. 7, we present inter-scanner differences for three comparisons:
Avanto vs. Prisma, Avanto vs. Skyra, and Prisma vs. Skyra. It is evident
that the performance of both segmentation methods depends on the par-
ticular choice of comparison. Nevertheless, most of the estimated differ-
ences are in favor of SAMSEG, especially for amygdala, lateral ventricles
and pallidum. A table of numerical results (means and standard devia-
tions) is provided in the appendix (see Table A.2). Similar to scan-rescan
reliability, spatial overlaps are also significantly better for SAMSEG ex-
cept putamen, which has significantly better scores for ASEG, see Fig. 8.

3.3. Longitudinal changes

SAMSEG’s higher intra- and inter-scanner reliability could be a result
of a lower sensitivity to detect relevant changes in brain volumes. We,
therefore, test the sensitivity of ASEG and SAMSEG to detect changes
over time using longitudinal scans and previously documented effects.
First, we run GAMMs to test whether ASEG and SAMSEG yields distinct
estimated lifespan trajectories for the volume of each structure when
both cross-sectional and longitudinal information is taken into account.
For this, we use a part of the LCBC scan-rescan dataset where two ob-
servations separated by at least one year are available for each partici-
pant. Each volume’s trajectory is modelled as a function of age, which
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Fig. 4. ASPC values across the lifespan for the Skyra dataset. Age-related trends are shown by the GAM curves.
Table 2

A summary of the mean and standard deviation hippocampus APC values for the age groups, segmentation methods and datasets. Standard deviations
are indicated in the parenthesis next to the mean APC values and a sample size of each group is indicated in the parenthesis next to the group name.

Left hippocampus

ASEG
Avanto
development (n = 247) 1.18 (1.52)
adulthood (n = 159) -0.23 (0.39)
aging (n = 85) -1.07 (0.77)
Skyra
development -
adulthood (n = 119) -0.38 (0.82)
aging (n = 126) -1.15 (1.02)

Right hippocampus

SAMSEG ASEG SAMSEG
0.84 (0.79) 1.23 (1.30) 0.85 (0.70)

~0.16 (0.26) ~0.22 (0.39) -0.13 (0.23)
~0.76 (0.70) ~0.90 (0.78) ~0.66 (0.69)
~0.20 (0.44) ~0.38 (0.52) ~0.28 (0.33)
~0.77 (0.74) ~1.28 (0.92) ~0.88 (0.70)

varies within each participant with more than one test occasion. The re-
sulting curves thus take into account both observed within-participant
change and between participant differences in age. Fig. 9 shows the esti-
mated lifespan trajectories for each method for the longitudinal Avanto
dataset. Although there are similarities in estimated age-trajectories be-
tween segmentation methods, there are also marked differences. Specif-
ically, ASEG estimates more prominent age-effects for the hippocampus,
amygdala and thalamus structures, with apparent volumetric reductions
starting at a much earlier age compared to the SAMSEG results. We ob-
serve similar results for the Skyra dataset as well.

Next, we analyze change as indexed by the APC between time-points.
We divide the sample into 3 age groups: development, adulthood and
aging as described in Section 2.4.2. Table 2 summarizes mean APC and
standard deviation values of hippocampus for each age group and seg-
mentation method. We choose hippocampus because of its known vul-
nerability both in normal aging and in degenerative diseases such as
AD. All estimated mean APC values are significantly different from zero
(t-test, p < 0.01) showing that both methods are sensitive to change in
all three groups. The mean differences in the APC values between the
segmentation methods for each age group are all significant (paired sam-

ples t-tests, p < 0.01) as well indicating that SAMSEG tends to estimate
smaller longitudinal changes than ASEG.

Fig. 10 illustrates Cohen’s D effect sizes based on the APC values
between development and adulthood, and between adulthood and aging
groups for hippocampus. SAMSEG results in larger numeric effect sizes
between development and adulthood whereas ASEG tends to estimate
larger effect sizes for adulthood vs. aging group. However, none these
differences are significant between segmentation methods.

Clinical sensitivity

The results of the longitudinal changes indicate that SAMSEG yields
lower APC values than ASEG. However, there is no ground truth whether
smaller or larger changes are more accurate. We, therefore, address the
clinical sensitivity using a subsample of ADNI data. For the purpose of
this analysis, we only consider a hippocampus since it is the most sen-
sitive structure for detecting AD.

In Fig. 11, we present longitudinal left hippocampus volume changes
for both segmentation methods. The observed differences are similar
between the methods but SAMSEG yields notably larger changes in AD
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Fig. 5. Dice coefficients across the lifespan for the Avanto dataset. Age-related trajectories are shown by the GAM curves. The y-axis scale varies across plots to

enable easier evaluation of age-trends.

Table 3
Group comparisons based on the estimated hippocampus mean APC
and standard deviation values.

Left hippocampus Right hippocampus

ASEG SAMSEG ASEG SAMSEG

CN  -218(1.80) -1.38(0.76) -1.80 (1.46) -1.45 (0.95)
MCl  -3.26 (245) -2.61(1.59) -3.56 (2.36) —2.62 (1.61)
AD  -250(3.98) -3.71(2.39) -3.22(433) -421(2.44)

group. In addition, SAMSEG tends to estimate larger volumes compared
to ASEG but this is consistent between the groups.

Table 3 summarizes the same group comparisons in terms of mean
and standard deviation of APC values. SAMSEG estimates significantly
lower APC values for CN and MCI groups but larger for AD group as
compared to ASEG. Nevertheless, SAMSEG leads to the detection of sig-
nificant differences in atrophy rates between all clinical groups except
for the left hippocampus MCI vs. AD comparison whereas the only signif-
icant difference for ASEG is seen for the right hippocampus CN vs. MCI
contrast. Generally, ASEG demonstrates larger APC variability within
each group which in turn hampers the detection of significant differ-
ences between the groups when sample sizes are small.

Fig. 12 shows Cohen’s D effect sizes and their 95% confidence in-
tervals between the group comparisons. The effects are generally larger
for SAMSEG than ASEG, but none are significantly different between the
segmentation methods.

Fig. 13 illustrates ROC-AUC curves for the classification of partic-
ipants into groups based on the APC values of the left hippocampus.
SAMSEG results in a larger number of correct classifications at the same
or lower rate of false positives than ASEG. A very similar scenario is
observed for the right hippocampus.

4, Discussion

The scan-rescan reliability indicates reliable volume estimation
across the lifespan, scanners and segmentation methods. Slight devia-

tions are observed for younger participants, presumably due to subtle
head motion artifacts. It has previously been shown that younger age
groups typically evidence increased motion artifacts, which can hinder
the identification of the tissue boundaries (Blumenthal et al., 2002). Im-
portantly, subtle motion artifacts can lead to systematic biases in auto-
matic measurement of structural brain properties (Yendiki et al., 2014).
Although different parallel imaging factors (GRAPPA) are used for the
Skyra scan-rescan dataset (GRAPPA = 2 vs. GRAPPA = 1), it does not
indicate sensitivity to lower signal-to-noise ratio and is comparable to
the Avanto dataset. Similar effects of parallel imaging acceleration are
shown by (Wonderlick et al., 2009).

The observed average volumetric differences across the lifespan for
ASEG are similar to previous reports (Jovicich et al., 2009; Morey et al.,
2010). Nevertheless, SAMSEG leads to significantly higher intra-scanner
volume estimation reliability for all subcortical structures and higher
spatial overlap except putamen, which has significantly higher spatial
overlap for ASEG. This is likely a result of SAMSEG’s probabilistic atlas,
which currently does not include claustrum structure. Claustrum’s thin
shape and proximity to putamen structure makes it difficult to reliably
segment at common image resolutions, for example, isotropic 1 mm3
voxels. The probabilistic atlas used in ASEG does not include claustrum
either, but it has its internal mechanism of removing it from the puta-
men segmentation. Fig. 14 shows an example segmentation of putamen
using ASEG and SAMSEG, which outlines the inclusion of claustrum for
SAMSEG.

Inter-scanner differences also support the findings of the intra-
scanner reliability. Although inter-scanner differences depend on the
particular comparison, SAMSEG in almost all the cases was able to esti-
mate smaller ASPD values than ASEG. In addition, SAMSEG shows much
lower variability of volumetric measures indicating improved reliability
and sensitivity to detect meaningful changes. This is especially impor-
tant when having small sample sizes as seen in the clinical sensitivity
analysis.

Higher intra-scanner and inter-scanner reliability could come at the
cost of less sensitivity to detect meaningful biological change, i.e. that
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Fig. 6. Dice coefficients across the lifespan for the Skyra dataset. Age-related trajectories are shown by the GAM curves
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Fig. 10. Cohen’s D effect sizes (dots) and their 95% confidence
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SAMSEG over-regularizes. However, the present analyses of within-
person longitudinal change suggest that SAMSEG does not achieve
improved reliability by sacrificing sensitive to change. Longitudinal
changes in hippocampal volume are detected by both methods, and the
APC values are comparable. In the absence of the ground truth longitudi-
nal changes, the present findings suggest that both methods are sensitive
to changes in hippocampal volume over time.

We also mapped the lifespan trajectory of each of the structures of
interest using GAMMs, taking both cross-sectional and longitudinal in-
formation into account. The segmentation differences between ASEG
and SAMSEG have substantial effect on lifespan trajectories. In gen-
eral, developmental trajectories are similar regardless of segmentation
method, replicating previous findings (Ostby et al., 2009), although ef-
fect sizes for the hippocampus are larger for SAMSEG than ASEG when

comparing development to adulthood. For adulthood and aging, how-
ever, marked differences are seen for most structures. For the hippocam-
pus and amygdala, the ASEG results replicated earlier studies showing
slight volumetric decline from young adulthood (Fjell et al., 2013), with
acceleration of volume loss from the sixties, especially marked for the
hippocampus. This is not observed for SAMSEG, where very little vol-
ume loss is seen before the accelerated decline in aging. For thalamus
and pallidum, there are large offset effects, where the estimated vol-
umes for the young children are much higher for ASEG, followed by a
steady decline after development ends, extending throughout the rest of
the lifespan. This pattern, which is in agreement with previous litera-
ture (Fjell et al., 2013), is not seen with SAMSEG. For these structures,
as well as nucleus accumbens, SAMSEG yields modest decline across
adulthood, with only some acceleration of volume loss in the oldest for
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Fig. 14. An example segmentation of the putamen structure. Left panel shows a region of MRI T1w image where putamen and claustrum are visible; center panel
shows the result of ASEG segmentation; right panel shows the result of SAMSEG segmentation with green arrows pointing to the parts of claustrum structure which

are segmented as putamen.

thalamus. Interestingly, while the previously reported U-shaped trajec-
tory for caudate (Fjell et al., 2013) is seen with ASEG, this is less evident
with SAMSEG, which shows a more linear volume decline also in higher
age. The implications of these findings await further explorations, but
the present results show that the two segmentation methods have sub-
stantial effects on the estimated lifespan trajectories of most subcortical
structures.

The longitudinal changes analyzed in the clinical setting suggest that
SAMSEG tends to be more sensitive to differences in hippocampal atro-
phy between CN, MCI and AD groups. This is especially important for de-
tecting the early accelerated hippocampal atrophy which is known to be
one of the most sensitive biomarkers of Alzheimer’s disease (Teipel et al.,
2013). Expected group differences are more consistently observed for
SAMSEG than ASEG. This is likely the result of larger variability between
change estimates for ASEG which in turn reduces the power to detect
significant differences between the groups. Therefore, based on the cur-
rent study there is evidence that ASEG might require more samples per
group in order to observe the expected group differences, whereas SAM-
SEG already shows greater sensitivity to detect relevant changes with
the relatively modest number of 20 patients in each group that we use
for assessment. This is well reflected in the Cohen’s D effect sizes and
ROC-AUC curves, which indicate the improved classifications based on
SAMSEG’s segmentations.

We have analyzed intra-scanner reliability of participants that were
not repositioned before acquiring a repeated scan. This scenario is un-
likely in the clinical setting where participants are usually taken out of
the scanner before acquiring another repeated scan. This, in turn, might
lead to an increased measurement variability and less reliable volumet-
ric estimates compared to what was observed in the present work. We
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also acknowledge that a visual rating procedure is not the most appro-
priate approach of pre-selecting images for the intra-scanner analysis
and the study is not informative with a view to the robustness of either
segmentation method in the presence of common artefacts. Finally, we
performed a comprehensive evaluation of longitudinal changes and sen-
sitivity for the hippocampus structure. The remaining subcortical struc-
tures should be addressed in addition as it is not evident that similar
longitudinal trends would be present.

Conclusions

Both whole-brain segmentation methods demonstrate high scan-
rescan reliability. Although SAMSEG yields significantly lower differ-
ences between repeated measures for intra- and inter-scanner analysis,
it does not compromise sensitivity to detect changes and demonstrates
ability to detect clinically relevant longitudinal changes. Therefore, the
method has a potential to be widely used in neuroimaging research. The
present findings will also direct many researchers who have the choice
between these two utilities, leading to a downstream impact in clinical
studies and laying the foundation for further studies that can build on
this.
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Appendix A

A summary of the mean and standard deviation (in parenthesis) ASPD values for both segmentation methods and datasets for the intra-scanner
reliability analysis. Abbreviations of structure names: PT (putamen), PA (pallidum), CA (caudate), TH (thalamus), HP (hippocampus), AM (am-
ygdala), LV (lateral ventricles) and AA (accumbens area). Names are prefixed with L- and R- to indicate left and right hemispheres respectively.
Bold numbers indicate the smallest mean and standard deviation values between the segmentation methods.

Avanto

ASEG SAMSEG
L-PT 1.15 (0.97) 0.49 (0.40)
R-PT 1.13 (0.90) 0.49 (0.40)
L-PA 1.91 (1.56) 0.54 (0.46)
R-PA 2.04 (1.73) 0.52 (0.41)
L-CA 1.05 (0.84) 0.47 (0.40)
R-CA 0.97 (0.82) 0.49 (0.43)
L-TH 1.02 (0.81) 0.21 (0.18)
R-TH 1.08 (0.88) 0.22 (0.18)
L-HP 1.33 (1.06) 0.57 (0.52)
R-HP 1.09 (0.89) 0.54 (0.48)
L-AM 3.10 (2.55) 0.65 (0.56)
R-AM 2.62 (2.12) 0.68 (0.58)
L-LV 1.00 (1.00) 0.47 (0.42)
R-LV 1.01 (1.09) 0.51 (0.45)
L-AA 4.82 (4.02) 0.97 (0.79)
R-AA 3.85 (3.25) 1.04 (0.87)

Skyra

ASEG SAMSEG
1.13 (0.92) 0.48 (0.39)
1.06 (0.85) 0.46 (0.38)
1.89 (1.57) 0.47 (0.40)
2.05 (1.65) 0.49 (0.42)
1.03 (0.83) 0.54 (0.44)
0.94 (0.81) 0.52 (0.42)
1.16 (0.89) 0.27 (0.22)
1.17 (0.89) 0.28 (0.23)
1.41 (1.23) 0.68 (0.63)
1.15 (0.93) 0.61 (0.59)
3.40 (2.71) 0.64 (0.54)
2.64 (2.18) 0.65 (0.53)
0.96 (0.99) 0.55 (0.48)
0.93 (0.92) 0.57 (0.50)
5.66 (5.03) 1.00 (0.89)
4.30 (3.65) 1.09 (0.94)
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A summary of the mean and standard deviation (in parenthesis) ASPD values for both segmentation methods in the between scanner analysis. Abbrevi-
ations of structure names: PT (putamen), PA (pallidum), CA (caudate), TH (thalamus), HP (hippocampus), AM (amygdala), LV (lateral ventricles) and
AA (accumbens area). Names are prefixed with L- and R- to indicate left and right hemispheres respectively. Bold numbers indicate the smallest mean
and standard deviation values between the segmentation methods.

Avs. P Avs. S Pvs.S
ASEG SAMSEG ASEG SAMSEG ASEG SAMSEG
L-PT 1.41 (1.06) 0.83 (0.61) 3.01 (1.33) 1.77 (1.16) 1.94 (1.41) 2.35 (1.15)
R-PT 1.30 (0.98) 0.87 (0.58) 3.37 (1.95) 1.87 (0.92) 2.45 (1.46) 2.10 (1.18)
L-PA 2.96 (2.26) 0.93 (0.67) 2.24 (1.44) 1.94 (0.59) 5.83 (2.83) 2.90 (0.87)
R-PA 3.54 (1.93) 1.41 (0.75) 4.88 (2.77) 2.66 (0.93) 9.09 (2.87) 3.52 (1.53)
L-CA 3.88 (1.58) 1.04 (0.59) 1.49 (1.26) 1.60 (0.76) 3.55 (1.75) 1.09 (0.81)
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L-AA 23.55(10.8) 4.69 (1.80) 10.23 (5.82) 2.29 (1.59) 38.58 (15.9) 5.42 (2.24)
R-AA 5.15 (4.55) 3.74 (2.22) 4,96 (4.41) 4.01 (2.26) 8.34 (7.85) 6.59 (3.54)
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Fig. A.1. Bland-Altman plots for the Avanto dataset and ASEG segmentation method. Limits of agreement (average difference + 1.96 standard deviation of the
difference) are shown by the red lines.
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Fig. A.2. Bland-Altman plots for the Avanto dataset and SAMSEG segmentation method. Limits of agreement (average difference + 1.96 standard deviation of the

difference) are shown by the red lines.
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