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a b s t r a c t 

Accurate and reliable whole-brain segmentation is critical to longitudinal neuroimaging studies. We undertake a comparative analysis of two subcortical segmentation 
methods, Automatic Segmentation (ASEG) and Sequence Adaptive Multimodal Segmentation (SAMSEG), recently provided in the open-source neuroimaging package 
FreeSurfer 7.1, with regard to reliability, bias, sensitivity to detect longitudinal change, and diagnostic sensitivity to Alzheimer’s disease. First, we assess intra- and 
inter-scanner reliability for eight bilateral subcortical structures: amygdala, caudate, hippocampus, lateral ventricles, nucleus accumbens, pallidum, putamen and 
thalamus. For intra-scanner analysis we use a large sample of participants ( n = 1629) distributed across the lifespan (age range = 4–93 years) and acquired on a 1.5T 
Siemens Avanto ( n = 774) and a 3T Siemens Skyra ( n = 855) scanners. For inter-scanner analysis we use a sample of 24 participants scanned on the day with three 
models of Siemens scanners: 1.5T Avanto, 3T Skyra and 3T Prisma. Second, we test how each method detects volumetric age change using longitudinal follow up 
scans ( n = 491 for Avanto and n = 245 for Skyra; interscan interval = 1–10 years). Finally, we test sensitivity to clinically relevant change. We compare annual rate 
of hippocampal atrophy in cognitively normal older adults ( n = 20), patients with mild cognitive impairment ( n = 20) and Alzheimer’s disease ( n = 20). We find 
that both ASEG and SAMSEG are reliable and lead to the detection of within-person longitudinal change, although with notable differences between age-trajectories 
for most structures, including hippocampus and amygdala. In summary, SAMSEG yields significantly lower differences between repeated measures for intra- and 
inter-scanner analysis without compromising sensitivity to changes and demonstrating ability to detect clinically relevant longitudinal changes. 
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. Introduction 

Automated techniques for whole-brain segmentation have become
xtremely useful in the study of a range of brain diseases and con-
itions, such as Alzheimer’s disease (AD) ( Chételat, 2018 ), and also
ormal changes such as in development ( Ostby et al., 2009 ) and ag-
ng ( Wonderlick et al., 2009 ). Automated techniques enable process-
ng of large numbers of magnetic resonance imaging (MRI) scans with
imited operator investments, enabling detailed segmentations of brains
rom large-scale brain imaging initiatives. One of the most extensively
sed whole-brain segmentation approaches is Automatic Segmenta-
ion (ASEG) ( Fischl et al., 2002 ), distributed as part of FreeSurfer
 http://freesurfer.net/ ) ( Fischl, 2012 ). FreeSurfer ASEG is a core tool
n large-scale neuroimaging projects such as the UK Biobank ( ≈ 40.000
cans to date) ( Alfaro-Almagro et al., 2018 ), ABCD ( ≈ 10.000 scans
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o date) ( Hagler et al., 2019 ), ADNI ( > 20.000 scans) ( Jack et al.,
008 ), ENIGMA ( > 50.000 scans) ( Thompson et al., 2020 ), and Lifebrain
 ≈ 10.000 scans) ( Walhovd et al., 2018 ). Although the accuracy of
utomated segmentation techniques such as ASEG is generally high
nd enables detection of longitudinal changes ( Mulder et al., 2014 ;
orker et al., 2018 ), reports have suggested that segmentation accuracy
ay vary as a function of variables such as age ( Wenger et al., 2014 )

nd brain size ( Herten et al., 2019 ; Schoemaker et al., 2016 ). Hence,
ontinued efforts are undertaken to improve accuracy and reduce bias
n the segmentations. 

Similar to many other current whole-brain segmentation techniques,
SEG is based on supervised models of T1-weighted images. As sig-
al intensities alone are not sufficient to distinguish between different
euroanatomical structures from a T1-weighted MRI, an atlas contain-
ng probabilistic information about the location of structures is used to
imer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As 
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Fig. 1. Examples of visual exclusion criterion. 
Left panel shows motion-free normal looking 
brains; center and right panels show images 
that have visible motion artefacts. 
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Fig. 2. Age distributions of Avanto and Skyra datasets. 

h  

f  

t  

d  

y  

r  

e  

p  

m  

f  

s  

q  

G  

s  

r

2

 

m  

S  
etermine the relationship between intensities and neuroanatomical la-
els in particular regions of the brain. The probabilistic atlas is generated
rom a set of manually labeled training images. The segmentation prob-
em is then solved in a Bayesian framework in which local shape, posi-
ion and appearance all contribute to the probability of a given label. Re-
ently, an alternative approach was suggested - Sequence Adaptive Mul-
imodal Segmentation (SAMSEG) – which uses generative parametric
odels ( Puonti et al., 2013 , 2016). Unlike ASEG, SAMSEG uses a mesh-

ased computational atlas combined with a Gaussian appearance model
o achieve independence of specific image contrast by grouping together
oxels with similar intensities ( Van Leemput, 2009 ). SAMSEG is less
omputationally demanding than other iterative segmentation methods
ince no preprocessing is needed and only a single, efficient non-linear
egistration of the atlas to the target image is required. Moreover, bias
eld estimation and correction are done simultaneous with segmenta-
ion and non-linear registration. Nevertheless, SAMSEG resulted in ac-
uracy comparable to ASEG and three other state-of-the-art methods in
egmenting T1-weighted MRIs ( Puonti et al., 2016 ). Since SAMSEG does
ot rely on the specific intensity profiles of a separate training data set,
t yields consistent segmentations across scanner platforms and pulse
equences. SAMSEG is included as part of the recent FreeSurfer 7.1 re-
ease (released May 11th, 2020), which enables its general use in the
euroimaging community. Therefore, a thorough analysis is necessary
o direct the choice between these two utilities provided in the same
idely used package of FreeSurfer. 

In the present study we undertake a thorough comparative anal-
sis of SAMSEG and ASEG in terms of reliability, bias, sensitivity to
ongitudinal change, and clinical sensitivity. Longitudinal SAMSEG is
sed in the present study, which was not available at the time of the
uonti et al. (2016) study. First, we assess intra- and inter- scanner reli-
bility. Second, since higher reliability could come at the cost of lower
ensitivity to biologically meaningful change, we test how ASEG and
AMSEG are able to detect neuroanatomic volumetric change in longi-
udinal follow up scans. Finally, we test how sensitive each method is to
linically relevant change by comparing the annual rate of hippocam-
al atrophy in a group of cognitively normal older adults (CN), patients
ith mild cognitive impairment (MCI) and patients with AD. 

. Materials and methods 

.1. Datasets 

.1.1. Lifespan scan-rescan dataset 

We use scan-rescan dataset selected from several ongoing projects
t the Center for Lifespan Changes in Brain and Cognition (LCBC), Uni-
ersity of Oslo, approved by the Regional Committees for Medical and
ealth Research Ethics South of Norway. Participants were cognitively
ealthy, and all participants or their guardian provided informed con-
ent (for details, see e.g. ( Walhovd et al., 2016 )). Images were acquired
sing two models of Siemens MRI scanners (Siemens Medical Solutions,
rlangen, Germany) - 1.5T Avanto and 3T Skyra, at Rikshospitalet, Oslo
niversity Hospital. A total of 890 participants (1643 sessions) and 887
articipants (1739 sessions) were included in the initial within-session
can-rescan datasets for Avanto and Skyra scanners respectively. All
mages were visually inspected for motion artefacts, and sessions that
2 
ad two images of no visual appearance of motion were included in
urther analysis. Fig. 1 illustrates examples of exclusion criterion. Af-
er discarding images with insufficient quality, the samples were re-
uced to 774 participants (427 females; 1362 sessions; age range = 4–93
ears) for Avanto and 855 participants (563 females; 1646 sessions; age
ange = 14–84 years) for Skyra. Fig 2 summarizes age distributions of
ach scanner dataset. All data was acquired using Magnetization Pre-
ared Rapid Gradient Echo (MPRAGE) sequence with parameters sum-
arized in Table 1 . The parameters for the scan-rescan datasets dif-

ered between the scanners but were identical for each session on the
ame scanner, except for the Skyra dataset where one image was ac-
uired using parallel acquisition factor GRAPPA = 1 and rescanned with
RAPPA = 2. To acquire data with optimal comparability within each

canner, participants remained in the same position between scan and
escan acquisitions. 

.1.2. Inter-scanner dataset 

For inter-scanner dataset, we use a sample of 24 participants (19 fe-
ales, age range between 20 and 36 years) scanned with three models of

iemens MRI scanners (Siemens Medical Solutions, Erlangen, Germany)
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Table 1 

A summary of MRI T1w MPRAGE acquisition parameters used for the LCBC 
intra- and inter-scanner datasets. For Skyra, a GRAPPA factor of 1 is used 
for inter-scanner analysis but 1 and 2 for intra-scanner analysis. Data of 
Prisma scanner is only used for inter-scanner analysis. 

Avanto Skyra Prisma 

Field strength (T) 1.5 3 3 

#slices 160 176 208 

FoV (mm 

2 ) 240 × 240 256 × 256 240 × 256 

TR (ms) 2400 2300 2400 

TE (ms) 3.61 2.98 2.22 

TI (ms) 1000 850 1000 

FA (°) 8 8 8 

Voxel size (mm 

3 ) 1.25 × 1.25 × 1.2 1 × 1 × 1 0.8 × 0.8 × 0.8 

Bandwidth (Hz) 180 240 220 

GRAPPA 1 1 (2) 2 

Head coil channels 12 20 32 
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n the same day - 1.5T Avanto, 3T Skyra and 3T Prisma, at Rikshos-
italet, Oslo University Hospital. Table 1 summarizes MRI T1w pulse
equence parameters of each scanner. 

.1.3. Lifespan longitudinal datasets 

For longitudinal LCBC datasets, we select participants from the scan-
escan dataset who also have a follow-up visit: 491 participants of the
vanto scanner and 245 participants of the Skyra scanner. Each partic-

pant has two visits with the follow-up ranging from 1 to 10 years for
he Avanto dataset and 1 to 5 years for the Skyra dataset. 

.1.4. Clinical sensitivity dataset 

In addition to the longitudinal LCBC datasets, we also include scans
rom the Alzheimer’s disease Neuroimaging Initiative (ADNI) database
 adni.loni.usc.edu ). The ADNI was launched in 2003 as a public-private
artnership, led by Principal Investigator Michael W. Weiner, MD. The
rimary goal of ADNI has been to test whether serial MRI, positron emis-
ion tomography, other biological makers, and clinical and neuropsy-
hological assessment can be combined to measure the progression of
CI and early AD. For up-to-date information, see www.adni-info.org .

or our study, we randomly select three groups of participants with sim-
lar age distributions: CN, MCI and AD. Each group consist of 20 partic-
pants. The selected sample of ADNI data has been acquired at different
ites using a Siemens Avanto 1.5T MRI scanner and MPRAGE sequence:
R = 2400 ms, TE = 3.54 ms, TI = 1000 ms, flip angle = 8°, voxel
ize = 1.25 × 1.25 × 1.2 mm 

3 , 192 × 192 acquisition matrix, 160 slices,
80 Hz pixel bandwidth, GRAPPA = 1, 8 channel matrix coil. Each par-
icipant has two visits with a follow-up ranging from 6 months to 2 years
or each group. 

.3. MRI processing 

Due to the non-linearity of the magnetic fields from the imaging gra-
ient coils, we first preprocess images to reduce geometrical variability
f the same participants’ brains between sessions. This is achieved by ob-
aining scanner-specific spherical harmonics expansions that represent
he gradient coils ( Jovicich et al., 2006 ). 

We use two fully automated subcortical segmentation methods
reeSurfer v7.1 ASEG and SAMSEG to process MRI data and measure
olumes of eight bilateral brain structures of interest: amygdala, cau-
ate, hippocampus, lateral ventricles, nucleus accumbens, pallidum,
utamen and thalamus. Briefly, the FreeSurfer ASEG pipeline includes
alairach transformation, intensity correction, the removal of nonbrain
issues and volumetric brain segmentation based upon the existence of
n atlas containing information on the location of structures, whereas
AMSEG utilizes a mesh-based atlas and a Bayesian modeling framework
o obtain volumetric segmentations without the need for skull-stripping.
oreover, SAMSEG does the bias field estimation and correction simul-

aneous with segmentation and non-linear registration which is not the
3 
ase for ASEG where each step is performed separately. Both methods
re fully automated and model-based that use a pre-built probabilistic
tlas prior from 39 to 20 subjects, respectively. The 20 subjects used for
AMSEG are a subset of the 39 used for ASEG. 

To extract reliable volume estimates, we process all datasets with
he longitudinal stream in FreeSurfer ASEG and SAMSEG. For FreeSurfer
SEG, an unbiased within-subject template space and image ( Reuter and
ischl, 2011 ) is created using robust, inverse consistent registration
 Reuter et al., 2010 ). Several processing steps, such as skull stripping,
alairach transforms, atlas registration, and spherical surface maps and
arcellations are then initialized with common information from the
ithin-subject template, significantly increasing reliability and statis-

ical power ( Reuter et al., 2012 ). Longitudinal SAMSEG is based on a
enerative model of longitudinal data ( Iglesias et al., 2016 ). In the for-
ard model, a subject-specific atlas is obtained by generating a random
arp from the usual population atlas, and subsequently each time point

s again randomly warped from this subject-specific atlas. Bayesian in-
erence is used to obtain the most likely segmentations, with the inter-
ediate subject-specific atlas playing the role of latent variable in the
odel, whose function is to ensure that various time points have atlas
arps that are similar between themselves, without having to define a
riori what these warps should be similar to. 

.4. Statistical analysis 

.4.1. Scan-rescan reliability 

We use multiple statistical approaches to describe and evaluate the
agnitude of intra- and inter-scanner variability between repeated mea-

urements. We calculate the absolute symmetrized percent difference
ASPD) as follows: 

𝑆𝑃 𝐷 

(
𝐿 1 , 𝐿 2 

)
= 

2 |||𝑉 
(
𝐿 1 

)
− 𝑉 

(
𝐿 2 

)|||
𝑉 
(
𝐿 1 

)
+ 𝑉 

(
𝐿 2 

) × 100% , 

here 𝐿 1 and 𝐿 2 are the segmented labels of the same structure but
f different images and 𝑉 ( 𝐿 ) is the volume of the label. ASPD value
f 0 indicates a perfect replicability, with increasing values indicat-
ng less reliable repeated measurements. We use Generalized additive
odels (GAM) ( Wood, 2017 ) to characterize volume estimation vari-

bility trends of subcortical structures across the lifespan. GAMs are
eneralized linear models in which the predictors depend linearly or
on-linearly on some smooth non-linear functions ( Hastie and Tibshi-
ani, 1990 ). The smooth functions are estimated from the data and en-
ble a flexible smooth curve fitting across the lifespan. In addition to
SPD, we also calculate Dice scores ( Dice, 1945 ), intraclass correlation
oefficients (ICC) ( McGraw and Wong, 1996 ; Koo and Li, 2016 ) and
land-Altman plots ( Bland and Altman, 1986 ). For ICC we use a 2-way
ixed-effects model, single measurement and absolute agreement ICC

orm. 

.4.2. Sensitivity to longitudinal change 

First, to assess whether the estimated lifespan trajectories of the sub-
ortical volumes differ depending on segmentation method, we use Gen-
ral Additive Mixed Models (GAMM) ( Wood, 2017 ). In contrast to GAMs
hich treat each observation as independent, GAMMs take longitudinal

nformation into account by explicitly modeling the correlation between
epeated measurements of the same subject, yielding a model which
aptures cross-sectional and longitudinal information. Second, to assess
ongitudinal changes, we use the annualized percentage change (APC)
alues between the baseline and the follow-up visits for all participants
ith two scans separated by one or more years. We compare APC values

or each segmentation method with paired samples t-tests. We divide the
ample into development ( < 20 years), adulthood (between 20 and 60
ears) and aging ( > 60 years) and compare APCs across age groups us-
ng t-tests and Cohen’s D. Cohen’s D is an effect size used to indicate the
tandardized difference between two means. Third, to address the clin-
cal sensitivity of each segmentation method, we compute APC for the

http://www.adni.loni.usc.edu
http://www.adni-info.org
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Fig. 3. ASPC values across the lifespan for the Avanto dataset. Age-related trends are shown by the GAM curves. 
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ippocampus for ADNI subjects, and assess differences in APC between
roups (NC vs. MCI vs. AD) using Cohen’s D. Finally, we use Receiver
perating Characteristic (ROC) curves and Area Under the Curve (AUC)

o address the classification sensitivity based on the APC values of the
ongitudinal hippocampus estimates in different groups. 

All statistical analyses described above is done using R statistical soft-
are package v3.6.3 ( R Core Team, 2020 ) and its related packages: mgcv

 Wood, 2017 ), ggplot2 ( Wickham, 2016 ), ggpubr ( Kassambara, 2020 ),
owplot ( Wilke, 2019 ) , irr ( Gamer et al., 2019 ), effsize ( Torchiano, 2020 )
nd dplyr ( Wickham et al., 2020 ). 

. Results 

.1. Scan-rescan reliability 

Fig. 3 and Fig. 4 show volume estimation differences between re-
eated intra-scanner acquisitions across the lifespan for the Avanto and
kyra datasets respectively. Although most of the subcortical structures
ndicate relatively flat lifespan trends, small deviations are observed
n the Avanto dataset for the young children group (age < 10 years)
hen using ASEG. This is not present in the Skyra dataset as it does not

nclude this age group. SAMSEG volumetric estimates are significantly
ower (paired samples t -test, p < 0.05) for both datasets and all struc-
ures across the lifespan, see appendix ( Table A.1 ) for summary statistics
hich also indicate lower standard deviations for SAMSEG. 

Fig. 5 and Fig. 6 indicate spatial overlap similarity in terms of dice
cores for the Avanto and Skyra datasets respectively. Most of the struc-
ures show inverted u-shape trajectories except the lateral ventricles
hich demonstrate almost linearly increasing reliability with aging.
SEG yields significantly higher spatial agreement for putamen whereas

he rest of the spatial overlaps are significantly better for SAMSEG
paired samples t -test, p < 0.01). The largest improvements are demon-
trated for amygdala, pallidum and nucleus accumbens. In general, all
ice scores are high for both the segmentation methods indicating a
ood spatial agreement between segmented volumes. 
4 
We also compute ICC to assess the agreement between the repeated
easurements for each scanner dataset and segmentation method. Al-

hough we find the reliability of the repeated measurements very high
ICC > 0.95) for both methods, SAMSEG results in significantly higher ( p
 0.01) ICC values for all subcortical structures. Bland-Altman plots of
oth methods do not indicate bias towards the estimated structure size,
ee appendix ( Fig. A.1 and Fig. A.2 ). However, despite consistent volu-
etric estimations regardless of the structure size, the limits of agree-
ent (average difference ± 1.96 standard deviation of the difference) are

n favor of SAMSEG. 

.2. Inter-scanner differences 

In Fig. 7 , we present inter-scanner differences for three comparisons:
vanto vs. Prisma, Avanto vs. Skyra, and Prisma vs. Skyra. It is evident

hat the performance of both segmentation methods depends on the par-
icular choice of comparison. Nevertheless, most of the estimated differ-
nces are in favor of SAMSEG, especially for amygdala, lateral ventricles
nd pallidum. A table of numerical results (means and standard devia-
ions) is provided in the appendix (see Table A.2 ). Similar to scan-rescan
eliability, spatial overlaps are also significantly better for SAMSEG ex-
ept putamen, which has significantly better scores for ASEG, see Fig. 8 .

.3. Longitudinal changes 

SAMSEG’s higher intra- and inter-scanner reliability could be a result
f a lower sensitivity to detect relevant changes in brain volumes. We,
herefore, test the sensitivity of ASEG and SAMSEG to detect changes
ver time using longitudinal scans and previously documented effects.
irst, we run GAMMs to test whether ASEG and SAMSEG yields distinct
stimated lifespan trajectories for the volume of each structure when
oth cross-sectional and longitudinal information is taken into account.
or this, we use a part of the LCBC scan-rescan dataset where two ob-
ervations separated by at least one year are available for each partici-
ant. Each volume’s trajectory is modelled as a function of age, which
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Fig. 4. ASPC values across the lifespan for the Skyra dataset. Age-related trends are shown by the GAM curves. 

Table 2 

A summary of the mean and standard deviation hippocampus APC values for the age groups, segmentation methods and datasets. Standard deviations 
are indicated in the parenthesis next to the mean APC values and a sample size of each group is indicated in the parenthesis next to the group name. 

Left hippocampus Right hippocampus 

ASEG SAMSEG ASEG SAMSEG 

Avanto 

development ( n = 247) 1.18 (1.52) 0.84 (0.79) 1.23 (1.30) 0.85 (0.70) 

adulthood ( n = 159) − 0.23 (0.39) − 0.16 (0.26) − 0.22 (0.39) − 0.13 (0.23) 

aging ( n = 85) − 1.07 (0.77) − 0.76 (0.70) − 0.90 (0.78) − 0.66 (0.69) 

Skyra 

development – – – –

adulthood ( n = 119) − 0.38 (0.82) − 0.20 (0.44) − 0.38 (0.52) − 0.28 (0.33) 

aging ( n = 126) − 1.15 (1.02) − 0.77 (0.74) − 1.28 (0.92) − 0.88 (0.70) 
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aries within each participant with more than one test occasion. The re-
ulting curves thus take into account both observed within-participant
hange and between participant differences in age. Fig. 9 shows the esti-
ated lifespan trajectories for each method for the longitudinal Avanto
ataset. Although there are similarities in estimated age-trajectories be-
ween segmentation methods, there are also marked differences. Specif-
cally, ASEG estimates more prominent age-effects for the hippocampus,
mygdala and thalamus structures, with apparent volumetric reductions
tarting at a much earlier age compared to the SAMSEG results. We ob-
erve similar results for the Skyra dataset as well. 

Next, we analyze change as indexed by the APC between time-points.
e divide the sample into 3 age groups: development, adulthood and

ging as described in Section 2.4.2 . Table 2 summarizes mean APC and
tandard deviation values of hippocampus for each age group and seg-
entation method. We choose hippocampus because of its known vul-
erability both in normal aging and in degenerative diseases such as
D. All estimated mean APC values are significantly different from zero
 t -test, p < 0.01) showing that both methods are sensitive to change in
ll three groups. The mean differences in the APC values between the
egmentation methods for each age group are all significant (paired sam-
5 
les t-tests, p < 0.01) as well indicating that SAMSEG tends to estimate
maller longitudinal changes than ASEG. 

Fig. 10 illustrates Cohen’s D effect sizes based on the APC values
etween development and adulthood, and between adulthood and aging
roups for hippocampus. SAMSEG results in larger numeric effect sizes
etween development and adulthood whereas ASEG tends to estimate
arger effect sizes for adulthood vs. aging group. However, none these
ifferences are significant between segmentation methods. 

linical sensitivity 

The results of the longitudinal changes indicate that SAMSEG yields
ower APC values than ASEG. However, there is no ground truth whether
maller or larger changes are more accurate. We, therefore, address the
linical sensitivity using a subsample of ADNI data. For the purpose of
his analysis, we only consider a hippocampus since it is the most sen-
itive structure for detecting AD. 

In Fig. 11 , we present longitudinal left hippocampus volume changes
or both segmentation methods. The observed differences are similar
etween the methods but SAMSEG yields notably larger changes in AD
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Fig. 5. Dice coefficients across the lifespan for the Avanto dataset. Age-related trajectories are shown by the GAM curves. The y-axis scale varies across plots to 
enable easier evaluation of age-trends. 

Table 3 

Group comparisons based on the estimated hippocampus mean APC 
and standard deviation values. 

Left hippocampus Right hippocampus 

ASEG SAMSEG ASEG SAMSEG 

CN − 2.18 (1.80) − 1.38 (0.76) − 1.80 (1.46) − 1.45 (0.95) 

MCI − 3.26 (2.45) − 2.61 (1.59) − 3.56 (2.36) − 2.62 (1.61) 

AD − 2.50 (3.98) − 3.71 (2.39) − 3.22 (4.33) − 4.21 (2.44) 
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roup. In addition, SAMSEG tends to estimate larger volumes compared
o ASEG but this is consistent between the groups. 

Table 3 summarizes the same group comparisons in terms of mean
nd standard deviation of APC values. SAMSEG estimates significantly
ower APC values for CN and MCI groups but larger for AD group as
ompared to ASEG. Nevertheless, SAMSEG leads to the detection of sig-
ificant differences in atrophy rates between all clinical groups except
or the left hippocampus MCI vs. AD comparison whereas the only signif-
cant difference for ASEG is seen for the right hippocampus CN vs. MCI
ontrast. Generally, ASEG demonstrates larger APC variability within
ach group which in turn hampers the detection of significant differ-
nces between the groups when sample sizes are small. 

Fig. 12 shows Cohen’s D effect sizes and their 95% confidence in-
ervals between the group comparisons. The effects are generally larger
or SAMSEG than ASEG, but none are significantly different between the
egmentation methods. 

Fig. 13 illustrates ROC-AUC curves for the classification of partic-
pants into groups based on the APC values of the left hippocampus.
AMSEG results in a larger number of correct classifications at the same
r lower rate of false positives than ASEG. A very similar scenario is
bserved for the right hippocampus. 

. Discussion 

The scan-rescan reliability indicates reliable volume estimation
cross the lifespan, scanners and segmentation methods. Slight devia-
6 
ions are observed for younger participants, presumably due to subtle
ead motion artifacts. It has previously been shown that younger age
roups typically evidence increased motion artifacts, which can hinder
he identification of the tissue boundaries ( Blumenthal et al., 2002 ). Im-
ortantly, subtle motion artifacts can lead to systematic biases in auto-
atic measurement of structural brain properties ( Yendiki et al., 2014 ).
lthough different parallel imaging factors (GRAPPA) are used for the
kyra scan-rescan dataset (GRAPPA = 2 vs. GRAPPA = 1), it does not
ndicate sensitivity to lower signal-to-noise ratio and is comparable to
he Avanto dataset. Similar effects of parallel imaging acceleration are
hown by ( Wonderlick et al., 2009 ). 

The observed average volumetric differences across the lifespan for
SEG are similar to previous reports ( Jovicich et al., 2009 ; Morey et al.,
010 ). Nevertheless, SAMSEG leads to significantly higher intra-scanner
olume estimation reliability for all subcortical structures and higher
patial overlap except putamen, which has significantly higher spatial
verlap for ASEG. This is likely a result of SAMSEG’s probabilistic atlas,
hich currently does not include claustrum structure. Claustrum’s thin

hape and proximity to putamen structure makes it difficult to reliably
egment at common image resolutions, for example, isotropic 1 mm 

3 

oxels. The probabilistic atlas used in ASEG does not include claustrum
ither, but it has its internal mechanism of removing it from the puta-
en segmentation. Fig. 14 shows an example segmentation of putamen
sing ASEG and SAMSEG, which outlines the inclusion of claustrum for
AMSEG. 

Inter-scanner differences also support the findings of the intra-
canner reliability. Although inter-scanner differences depend on the
articular comparison, SAMSEG in almost all the cases was able to esti-
ate smaller ASPD values than ASEG. In addition, SAMSEG shows much

ower variability of volumetric measures indicating improved reliability
nd sensitivity to detect meaningful changes. This is especially impor-
ant when having small sample sizes as seen in the clinical sensitivity
nalysis. 

Higher intra-scanner and inter-scanner reliability could come at the
ost of less sensitivity to detect meaningful biological change, i.e. that
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Fig. 6. Dice coefficients across the lifespan for the Skyra dataset. Age-related trajectories are shown by the GAM curves. The y-axis scale varies across plots to 
facilitate easier evaluation of age-trends. 

Fig. 7. Bar plots of ASPD values for inter-scanner comparisons. X-axis abbreviations: Avanto vs. Prisma (A vs. P), Avanto vs. Skyra (A vs. S) and Prisma vs. Skyra 
(P vs. S). Significant differences between segmentation methods are indicated by horizontal lines with significance codes of the p-values above: 0.0001 ‘ ∗ ∗ ∗ ∗ ’, 0.001 
‘ ∗ ∗ ∗ ’, 0.01 ‘ ∗ ∗ ’, 0.05 ‘ ∗ ’. 

7 
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Fig. 8. Box plots of Dice scores for inter-scanner comparisons. X-axis abbreviations: Avanto vs. Prisma (A vs. P), Avanto vs. Skyra (A vs. S) and Prisma vs. Skyra (P 
vs. S). All differences between segmentation methods are significant ( p < 0.05). 

Fig. 9. Lifespan trajectories for the Avanto dataset. The trajectories are estimated by GAMM and represent a combination of cross-sectional and longitudinal 
information. 

8 
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Fig. 10. Cohen’s D effect sizes (dots) and their 95% confidence 
intervals (vertical bars) for development vs. adulthood, and 
adulthood vs. aging groups for the Avanto dataset. 

Fig. 11. Longitudinal left hippocampus volume changes be- 
tween the segmentation methods for CN, MCI and AD groups. 

Fig. 12. Cohen’s D effect sizes (dots) and their 95% confidence 
intervals (vertical bars) for the group comparisons between 
ASEG and SAMSEG for the left and right hippocampus. 
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AMSEG over-regularizes. However, the present analyses of within-
erson longitudinal change suggest that SAMSEG does not achieve
mproved reliability by sacrificing sensitive to change. Longitudinal
hanges in hippocampal volume are detected by both methods, and the
PC values are comparable. In the absence of the ground truth longitudi-
al changes, the present findings suggest that both methods are sensitive
o changes in hippocampal volume over time. 

We also mapped the lifespan trajectory of each of the structures of
nterest using GAMMs, taking both cross-sectional and longitudinal in-
ormation into account. The segmentation differences between ASEG
nd SAMSEG have substantial effect on lifespan trajectories. In gen-
ral, developmental trajectories are similar regardless of segmentation
ethod, replicating previous findings ( Ostby et al., 2009 ), although ef-

ect sizes for the hippocampus are larger for SAMSEG than ASEG when
9 
omparing development to adulthood. For adulthood and aging, how-
ver, marked differences are seen for most structures. For the hippocam-
us and amygdala, the ASEG results replicated earlier studies showing
light volumetric decline from young adulthood ( Fjell et al., 2013 ), with
cceleration of volume loss from the sixties, especially marked for the
ippocampus. This is not observed for SAMSEG, where very little vol-
me loss is seen before the accelerated decline in aging. For thalamus
nd pallidum, there are large offset effects, where the estimated vol-
mes for the young children are much higher for ASEG, followed by a
teady decline after development ends, extending throughout the rest of
he lifespan. This pattern, which is in agreement with previous litera-
ure ( Fjell et al., 2013 ), is not seen with SAMSEG. For these structures,
s well as nucleus accumbens, SAMSEG yields modest decline across
dulthood, with only some acceleration of volume loss in the oldest for
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Fig. 13. The ROC-AUC curves for classifying participants based on the APC values of the longitudinal left hippocampus estimates: (a) AD from CN, (b) AD from MCI 
and (c) MCI from CN. 

Fig. 14. An example segmentation of the putamen structure. Left panel shows a region of MRI T1w image where putamen and claustrum are visible; center panel 
shows the result of ASEG segmentation; right panel shows the result of SAMSEG segmentation with green arrows pointing to the parts of claustrum structure which 
are segmented as putamen. 
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halamus. Interestingly, while the previously reported U-shaped trajec-
ory for caudate ( Fjell et al., 2013 ) is seen with ASEG, this is less evident
ith SAMSEG, which shows a more linear volume decline also in higher
ge. The implications of these findings await further explorations, but
he present results show that the two segmentation methods have sub-
tantial effects on the estimated lifespan trajectories of most subcortical
tructures. 

The longitudinal changes analyzed in the clinical setting suggest that
AMSEG tends to be more sensitive to differences in hippocampal atro-
hy between CN, MCI and AD groups. This is especially important for de-
ecting the early accelerated hippocampal atrophy which is known to be
ne of the most sensitive biomarkers of Alzheimer’s disease ( Teipel et al.,
013 ). Expected group differences are more consistently observed for
AMSEG than ASEG. This is likely the result of larger variability between
hange estimates for ASEG which in turn reduces the power to detect
ignificant differences between the groups. Therefore, based on the cur-
ent study there is evidence that ASEG might require more samples per
roup in order to observe the expected group differences, whereas SAM-
EG already shows greater sensitivity to detect relevant changes with
he relatively modest number of 20 patients in each group that we use
or assessment. This is well reflected in the Cohen’s D effect sizes and
OC-AUC curves, which indicate the improved classifications based on
AMSEG’s segmentations. 

We have analyzed intra-scanner reliability of participants that were
ot repositioned before acquiring a repeated scan. This scenario is un-
ikely in the clinical setting where participants are usually taken out of
he scanner before acquiring another repeated scan. This, in turn, might
ead to an increased measurement variability and less reliable volumet-
ic estimates compared to what was observed in the present work. We
 D  

10 
lso acknowledge that a visual rating procedure is not the most appro-
riate approach of pre-selecting images for the intra-scanner analysis
nd the study is not informative with a view to the robustness of either
egmentation method in the presence of common artefacts. Finally, we
erformed a comprehensive evaluation of longitudinal changes and sen-
itivity for the hippocampus structure. The remaining subcortical struc-
ures should be addressed in addition as it is not evident that similar
ongitudinal trends would be present. 

onclusions 

Both whole-brain segmentation methods demonstrate high scan-
escan reliability. Although SAMSEG yields significantly lower differ-
nces between repeated measures for intra- and inter-scanner analysis,
t does not compromise sensitivity to detect changes and demonstrates
bility to detect clinically relevant longitudinal changes. Therefore, the
ethod has a potential to be widely used in neuroimaging research. The
resent findings will also direct many researchers who have the choice
etween these two utilities, leading to a downstream impact in clinical
tudies and laying the foundation for further studies that can build on
his. 
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Table A.1 

A summary of the mean and standard deviation (in parenthesis) ASPD va
reliability analysis. Abbreviations of structure names: PT (putamen), PA (
ygdala), LV (lateral ventricles) and AA (accumbens area). Names are prefi
Bold numbers indicate the smallest mean and standard deviation values b

Avanto 

ASEG SAMSEG 

L-PT 1.15 (0.97) 0.49 (0.40

R-PT 1.13 (0.90) 0.49 (0.40

L-PA 1.91 (1.56) 0.54 (0.46

R-PA 2.04 (1.73) 0.52 (0.41

L-CA 1.05 (0.84) 0.47 (0.40

R-CA 0.97 (0.82) 0.49 (0.43

L-TH 1.02 (0.81) 0.21 (0.18

R-TH 1.08 (0.88) 0.22 (0.18

L-HP 1.33 (1.06) 0.57 (0.52

R-HP 1.09 (0.89) 0.54 (0.48

L-AM 3.10 (2.55) 0.65 (0.56

R-AM 2.62 (2.12) 0.68 (0.58

L-LV 1.00 (1.00) 0.47 (0.42

R-LV 1.01 (1.09) 0.51 (0.45

L-AA 4.82 (4.02) 0.97 (0.79

R-AA 3.85 (3.25) 1.04 (0.87
11 
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ppendix A 

or both segmentation methods and datasets for the intra-scanner 
um), CA (caudate), TH (thalamus), HP (hippocampus), AM (am- 
ith l - and R- to indicate left and right hemispheres respectively. 

en the segmentation methods. 

Skyra 

ASEG SAMSEG 

1.13 (0.92) 0.48 (0.39) 

1.06 (0.85) 0.46 (0.38) 

1.89 (1.57) 0.47 (0.40) 

2.05 (1.65) 0.49 (0.42) 

1.03 (0.83) 0.54 (0.44) 

0.94 (0.81) 0.52 (0.42) 

1.16 (0.89) 0.27 (0.22) 

1.17 (0.89) 0.28 (0.23) 

1.41 (1.23) 0.68 (0.63) 

1.15 (0.93) 0.61 (0.59) 

3.40 (2.71) 0.64 (0.54) 

2.64 (2.18) 0.65 (0.53) 

0.96 (0.99) 0.55 (0.48) 

0.93 (0.92) 0.57 (0.50) 

5.66 (5.03) 1.00 (0.89) 

4.30 (3.65) 1.09 (0.94) 
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Table A.2 

A summary of the mean and standard deviation (in parenthesis) ASPD values for both segmentation methods in the between scanner analysis. Abbrevi- 
ations of structure names: PT (putamen), PA (pallidum), CA (caudate), TH (thalamus), HP (hippocampus), AM (amygdala), LV (lateral ventricles) and 
AA (accumbens area). Names are prefixed with l - and R- to indicate left and right hemispheres respectively. Bold numbers indicate the smallest mean 
and standard deviation values between the segmentation methods. 

A vs. P A vs. S P vs. S 

ASEG SAMSEG ASEG SAMSEG ASEG SAMSEG 

L-PT 1.41 (1.06) 0.83 (0.61) 3.01 (1.33) 1.77 (1.16) 1.94 (1.41) 2.35 (1.15) 

R-PT 1.30 (0.98) 0.87 (0.58) 3.37 (1.95) 1.87 (0.92) 2.45 (1.46) 2.10 (1.18) 

L-PA 2.96 (2.26) 0.93 (0.67) 2.24 (1.44) 1.94 (0.59) 5.83 (2.83) 2.90 (0.87) 

R-PA 3.54 (1.93) 1.41 (0.75) 4.88 (2.77) 2.66 (0.93) 9.09 (2.87) 3.52 (1.53) 

L-CA 3.88 (1.58) 1.04 (0.59) 1.49 (1.26) 1.60 (0.76) 3.55 (1.75) 1.09 (0.81) 

R-CA 2.79 (1.22) 1.78 (0.92) 2.10 (1.13) 2.03 (0.73) 1.37 (1.27) 0.83 (0.66) 

L-TH 4.05 (1.37) 1.75 (0.66) 1.71 (1.26) 1.27 (0.87) 5.88 (1.58) 0.79 (0.58) 

R-TH 4.03 (1.30) 1.65 (0.78) 2.13 (1.69) 1.75 (1.14) 3.28 (1.57) 0.85 (0.52) 

L-HP 3.27 (1.38) 3.04 (1.15) 2.95 (1.95) 2.42 (0.94) 6.70 (2.66) 4.54 (1.19) 

R-HP 5.07 (2.11) 3.25 (1.53) 1.77 (1.52) 1.09 (0.84) 6.98 (2.14) 3.20 (1.02) 

L-AM 6.68 (3.98) 1.80 (1.18) 6.39 (3.70) 1.20 (0.88) 5.00 (2.99) 1.47 (1.02) 

R-AM 4.79 (3.52) 2.28 (1.29) 4.22 (3.31) 1.19 (0.97) 3.63 (3.33) 2.55 (1.43) 

L-LV 9.09 (5.00) 2.03 (1.08) 5.16 (2.78) 1.84 (1.18) 14.14 (7.19) 3.36 (1.72) 

R-LV 8.40 (4.97) 2.84 (1.08) 4.46 (2.37) 1.51 (1.23) 12.60 (7.02) 4.02 (1.52) 

L-AA 23.55 (10.8) 4.69 (1.80) 10.23 (5.82) 2.29 (1.59) 38.58 (15.9) 5.42 (2.24) 

R-AA 5.15 (4.55) 3.74 (2.22) 4.96 (4.41) 4.01 (2.26) 8.34 (7.85) 6.59 (3.54) 

Fig. A.1. Bland-Altman plots for the Avanto dataset and ASEG segmentation method. Limits of agreement (average difference ± 1.96 standard deviation of the 
difference) are shown by the red lines. 
12 
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Fig. A.2. Bland-Altman plots for the Avanto dataset and SAMSEG segmentation method. Limits of agreement (average difference ± 1.96 standard deviation of the 
difference) are shown by the red lines. 

R

A  

 

 

 

 

B  

B  

 

C  

 

D  

F  

F  

 

 

 

F  

 

 

G  

H  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H
H  

 

I  

 

 

J  

 

 

 

 

 

 

J  

 

 

J  

 

 

 

K
K  

 

M  

M  

 

eferences 

lfaro-Almagro, F., Jenkinson, M., Bangerter, N.K., Andersson, J.L.R., Griffanti, L.,
Douaud, G., Sotiropoulos, S.N., Jbabdi, S., Hernandez-Fernandez, M., Vallee, E., Vi-
daurre, D., Webster, M., McCarthy, P., Rorden, C., Daducci, A., Alexander, D.C.,
Zhang, H., Dragonu, I., Matthews, P.M., Miller, K.L., Smith, S.M., 2018. Image process-
ing and quality control for the first 10,000 brain imaging datasets from UK Biobank.
Neuroimage 166, 400–424. doi: 10.1016/j.neuroimage.2017.10.034 . 

land, J.M. , Altman, D.G. , 1986. Statistical methods for assessing agreement between two
methods of clinical measurement. Lancet 1, 307–310 . 

lumenthal, J.D., Zijdenbos, A., Molloy, E., Giedd, J.N., 2002. Motion artifact in mag-
netic resonance imaging: implications for automated analysis. Neuroimage 16, 89–92.
doi: 10.1006/nimg.2002.1076 . 

hételat, G., 2018. Multimodal neuroimaging in Alzheimer’s disease: early diagno-
sis, physiopathological mechanisms, and impact of lifestyle. JAD 64, S199–S211.
doi: 10.3233/JAD-179920 . 

ice, L.R., 1945. Measures of the amount of ecologic association between species. Ecology
26, 297–302. doi: 10.2307/1932409 . 

ischl, B., 2012. FreeSurfer. NeuroImage 62, 774–781. doi: 10.1016/j.neuroimage.
2012.01.021 . 

ischl, B., Salat, D.H., Busa, E., Albert, M., Dieterich, M., Haselgrove, C., van der
Kouwe, A., Killiany, R., Kennedy, D., Klaveness, S., Montillo, A., Makris, N.,
Rosen, B., Dale, A.M., 2002. Whole brain segmentation: automated label-
ing of neuroanatomical structures in the human brain. Neuron 33, 341–355.
doi: 10.1016/s0896-6273(02)00569-x . 

jell, A.M., Westlye, L.T., Grydeland, H., Amlien, I., Espeseth, T., Reinvang, I., Raz, N.,
Holland, D., Dale, A.M., Walhovd, K.B., 2013. Critical ages in the life course
of the adult brain: nonlinear subcortical aging. Neurobiol. Aging 34, 2239–2247.
doi: 10.1016/j.neurobiolaging.2013.04.006 . 

amer, M., Lemon, J., Singh, I.F.P., 2019. irr: Various coefficients of interrater reliability
and agreement. 

agler, D.J., Hatton, SeanN., Cornejo, M.D., Makowski, C., Fair, D.A., Dick, A.S., Suther-
land, M.T., Casey, B.J., Barch, D.M., Harms, M.P., Watts, R., Bjork, J.M., Gara-
van, H.P., Hilmer, L., Pung, C.J., Sicat, C.S., Kuperman, J., Bartsch, H., Xue, F.,
Heitzeg, M.M., Laird, A.R., Trinh, T.T., Gonzalez, R., Tapert, S.F., Riedel, M.C.,
Squeglia, L.M., Hyde, L.W., Rosenberg, M.D., Earl, E.A., Howlett, K.D., Baker, F.C.,
Soules, M., Diaz, J., de Leon, O.R., Thompson, W.K., Neale, M.C., Herting, M.,
Sowell, E.R., Alvarez, R.P., Hawes, S.W., Sanchez, M., Bodurka, J., Breslin, F.J.,
Morris, A.S., Paulus, M.P., Simmons, W.K., Polimeni, J.R., van der Kouwe, A.,
Nencka, A.S., Gray, K.M., Pierpaoli, C., Matochik, J.A., Noronha, A., Aklin, W.M.,
Conway, K., Glantz, M., Hoffman, E., Little, R., Lopez, M., Pariyadath, V.,
Weiss, S.R.B., Wolff-Hughes, D.L., DelCarmen-Wiggins, R., Feldstein Ewing, S.W.,
Miranda-Dominguez, O., Nagel, B.J., Perrone, A.J., Sturgeon, D.T., Goldstone, A.,
Pfefferbaum, A., Pohl, K.M., Prouty, D., Uban, K., Bookheimer, S.Y., Dapretto, M.,
Galvan, A., Bagot, K., Giedd, J., Infante, M.A., Jacobus, J., Patrick, K., Shilling, P.D.,
13 
Desikan, R., Li, Y., Sugrue, L., Banich, M.T., Friedman, N., Hewitt, J.K., Hopfer, C.,
Sakai, J., Tanabe, J., Cottler, L.B., Nixon, S.J., Chang, L., Cloak, C., Ernst, T.,
Reeves, G., Kennedy, D.N., Heeringa, S., Peltier, S., Schulenberg, J., Sripada, C.,
Zucker, R.A., Iacono, W.G., Luciana, M., Calabro, F.J., Clark, D.B., Lewis, D.A.,
Luna, B., Schirda, C., Brima, T., Foxe, J.J., Freedman, E.G., Mruzek, D.W., Ma-
son, M.J., Huber, R., McGlade, E., Prescot, A., Renshaw, P.F., Yurgelun-Todd, D.A.,
Allgaier, N.A., Dumas, J.A., Ivanova, M., Potter, A., Florsheim, P., Larson, C., Lis-
dahl, K., Charness, M.E., Fuemmeler, B., Hettema, J.M., Maes, H.H., Steinberg, J.,
Anokhin, A.P., Glaser, P., Heath, A.C., Madden, P.A., Baskin-Sommers, A., Consta-
ble, R.T., Grant, S.J., Dowling, G.J., Brown, S.A., Jernigan, T.L., Dale, A.M., 2019.
Image processing and analysis methods for the adolescent brain cognitive develop-
ment study. Neuroimage 202, 116091. doi: 10.1016/j.neuroimage.2019.116091 . 

astie, T.J. , Tibshirani, R.J. , 1990. Generalized Additive Models. CRC Press . 
erten, A., Konrad, K., Krinzinger, H., Seitz, J., von Polier, G.G., 2019. Accuracy and bias

of automatic hippocampal segmentation in children and adolescents. Brain Struct.
Funct. 224, 795–810. doi: 10.1007/s00429-018-1802-2 . 

glesias, J.E., Van Leemput, K., Augustinack, J., Insausti, R., Fischl, B., Reuter, M.,
2016. Bayesian longitudinal segmentation of hippocampal substructures
in brain MRI using subject-specific atlases. Neuroimage 141, 542–555.
doi: 10.1016/j.neuroimage.2016.07.020 . 

ack, C.R., Bernstein, M.A., Fox, N.C., Thompson, P., Alexander, G., Harvey, D.,
Borowski, B., Britson, P.J., Whitwell, L., J., Ward, C., Dale, A.M., Felmlee, J.P., Gunter,
J.L., Hill, D.L.G., Killiany, R., Schuff, N., Fox-Bosetti, S., Lin, C., Studholme, C., De-
Carli, C.S., Gunnar Krueger, Ward, H.A., Metzger, G.J., Scott, K.T., Mallozzi, R.,
Blezek, D., Levy, J., Debbins, J.P., Fleisher, A.S., Albert, M., Green, R., Bartzokis, G.,
Glover, G., Mugler, J., Weiner, M.W., Study, A.D.N.I., 2008. The Alzheimer’s disease
neuroimaging initiative (ADNI): MRI methods. J. Magn. Reson. Imaging 27, 685–691.
doi: 10.1002/jmri.21049 . 

ovicich, J., Czanner, S., Greve, D., Haley, E., van der Kouwe, A., Gollub, R., Kennedy, D.,
Schmitt, F., Brown, G., MacFall, J., Fischl, B., Dale, A., 2006. Reliability in multi-site
structural MRI studies: effects of gradient non-linearity correction on phantom and
human data. Neuroimage 30, 436–443. doi: 10.1016/j.neuroimage.2005.09.046 . 

ovicich, J., Czanner, S., Han, X., Salat, D., van der Kouwe, A., Quinn, B., Pacheco, J.,
Albert, M., Killiany, R., Blacker, D., 2009. MRI-derived measurements of human sub-
cortical, ventricular and intracranial brain volumes: reliability effects of scan ses-
sions, acquisition sequences, data analyses, scanner upgrade, scanner vendors and
field strengths. Neuroimage 46, 177–192. doi: 10.1016/j.neuroimage.2009.02.010 . 

assambara, A., 2020. ggpubr: “ggplot2 ” based publication ready plots. 
oo, T.K., Li, M.Y., 2016. A guideline of selecting and reporting intraclass cor-

relation coefficients for reliability research. J. Chiropr. Med. 15, 155–163.
doi: 10.1016/j.jcm.2016.02.012 . 

cGraw, K.O., Wong, S.P. , 1996. Forming inferences about some intraclass correlation
coefficients. Psychol. Methods 1, 30–46. doi: 10.1037/1082-989X.1.1.30 . 

orey, R.A., Selgrade, E.S., Wagner, H.R., Huettel, S.A., Wang, L., McCarthy, G., 2010.
Scan-rescan reliability of subcortical brain volumes derived from automated segmen-
tation. Hum. Brain Mapp. doi: 10.1002/hbm.20973 , NA-NA . 

https://doi.org/10.1016/j.neuroimage.2017.10.034
http://refhub.elsevier.com/S1053-8119(21)00390-6/sbref0002
http://refhub.elsevier.com/S1053-8119(21)00390-6/sbref0002
http://refhub.elsevier.com/S1053-8119(21)00390-6/sbref0002
https://doi.org/10.1006/nimg.2002.1076
https://doi.org/10.3233/JAD-179920
https://doi.org/10.2307/1932409
https://doi.org/10.1016/j.neuroimage.\penalty -\@M 2012.01.021
https://doi.org/10.1016/s0896-6273(02)00569-x
https://doi.org/10.1016/j.neurobiolaging.2013.04.006
https://doi.org/10.1016/j.neuroimage.2019.116091
http://refhub.elsevier.com/S1053-8119(21)00390-6/sbref0011
http://refhub.elsevier.com/S1053-8119(21)00390-6/sbref0011
http://refhub.elsevier.com/S1053-8119(21)00390-6/sbref0011
https://doi.org/10.1007/s00429-018-1802-2
https://doi.org/10.1016/j.neuroimage.2016.07.020
https://doi.org/10.1002/jmri.21049
https://doi.org/10.1016/j.neuroimage.2005.09.046
https://doi.org/10.1016/j.neuroimage.2009.02.010
https://doi.org/10.1016/j.jcm.2016.02.012
https://doi.org/10.1037/1082-989X.1.1.30
https://doi.org/10.1002/hbm.20973


D. Sederevi čius, D. Vidal-Piñeiro, Ø. Sørensen et al. NeuroImage 237 (2021) 118113 

M  

 

 

 

O  

 

P  

 

P  

 

 

 

R  

R  

R  

 

R  

 

S  

 

 

T  

 

 

T  

 

 

 

T
V  

W  

 

 

 

 

W  

 

 

 

W  

 

 

 

W  

W  

W
W  

 

 

 

W  

W  

 

 

 

Y  

 

ulder, E.R., de Jong, R.A., Knol, D.L., van Schijndel, R.A., Cover, K.S., Visser, P.J.,
Barkhof, F., Vrenken, H., 2014. Hippocampal volume change measurement:
quantitative assessment of the reproducibility of expert manual outlining
and the automated methods FreeSurfer and FIRST. Neuroimage 92, 169–181.
doi: 10.1016/j.neuroimage.2014.01.058 . 

stby, Y., Tamnes, C.K., Fjell, A.M., Westlye, L.T., Due-Tonnessen, P., Walhovd, K.B.,
2009. Heterogeneity in subcortical brain development: a structural magnetic reso-
nance imaging study of brain maturation from 8 to 30 years. J. Neurosci. 29, 11772–
11782. doi: 10.1523/JNEUROSCI.1242-09.2009 . 

uonti, O., Iglesias, J.E., Van Leemput, K., 2016. Fast and sequence-adaptive whole-
brain segmentation using parametric Bayesian modeling. Neuroimage 143, 235–249.
doi: 10.1016/j.neuroimage.2016.09.011 . 

uonti, O., Iglesias, J.E., Van Leemput, K., 2013. Fast, sequence adaptive parcella-
tion of brain MR using parametric models. In: Salinesi, C., Norrie, M.C., Pas-
tor, Ó. (Eds.), Advanced Information Systems Engineering, Lecture Notes in
Computer Science. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 727–734.
doi: 10.1007/978-3-642-40811-3_91 . 

 Core Team, 2020. R: A Language and Environment for Statistical Computing.. R Foun-
dation for Statistical Computing, Vienna, Austria . 

euter, M., Fischl, B., 2011. Avoiding asymmetry-induced bias in longitudinal image pro-
cessing. Neuroimage 57, 19–21. doi: 10.1016/j.neuroimage.2011.02.076 . 

euter, M., Rosas, H.D., Fischl, B., 2010. Highly accurate inverse con-
sistent registration: a robust approach. Neuroimage 53, 1181–1196.
doi: 10.1016/j.neuroimage.2010.07.020 . 

euter, M., Schmansky, N.J., Rosas, H.D., Fischl, B., 2012. Within-subject template
estimation for unbiased longitudinal image analysis. Neuroimage 61, 1402–1418.
doi: 10.1016/j.neuroimage.2012.02.084 . 

choemaker, D., Buss, C., Head, K., Sandman, C.A., Davis, E.P., Chakravarty, M.M., Gau-
thier, S., Pruessner, J.C., 2016. Hippocampus and amygdala volumes from magnetic
resonance images in children: assessing accuracy of FreeSurfer and FSL against man-
ual segmentation. Neuroimage 129, 1–14. doi: 10.1016/j.neuroimage.2016.01.038 . 

eipel, S.J., Grothe, M., Lista, S., Toschi, N., Garaci, F.G., Hampel, H., 2013. Relevance of
magnetic resonance imaging for early detection and diagnosis of Alzheimer disease.
Medical Clinics of North America, early diagnosis and intervention in predementia
Alzheimer’s disease 97, 399–424. https://doi.org/10.1016/j.mcna.2012.12.013 

hompson, P.M., Jahanshad, N., Ching, C.R.K., Salminen, L.E., Thomopoulos, S.I.,
Bright, J., Baune, B.T., Bertolín, S., Bralten, J., Bruin, W.B., 2020. ENIGMA
and global neuroscience: a decade of large-scale studies of the brain in
health and disease across more than 40 countries. Transl. Psychiatry 10, 1–28.
doi: 10.1038/s41398-020-0705-1 . 
14 
orchiano, M., 2020. effsize: efficient effect size computation. 
an Leemput, K., 2009. Encoding probabilistic brain atlases using Bayesian inference.

IEEE Trans. Med. Imaging 28, 822–837. doi: 10.1109/TMI.2008.2010434 . 
alhovd, K.B., Fjell, A.M., Westerhausen, R., Nyberg, L., Ebmeier, K.P., Lindenberger, U.,

Bartrés-Faz, D., Baaré, W.F.C., Siebner, H.R., Henson, R., Drevon, C.A., Knud-
sen, Strømstad, G.P., Ljøsne, I.B., Penninx, B.W.J.H., Ghisletta, P., Rogeberg, O., Tyler,
L., Bertram, Lifebrain Consortium, L., 2018. Healthy minds 0–100 years: optimising
the use of European brain imaging cohorts ( “Lifebrain ”). Eur. psychiatr 50, 47–56.
doi: 10.1016/j.eurpsy.2017.12.006 . 

alhovd, K.B., Krogsrud, S.K., Amlien, I.K., Bartsch, H., Bjørnerud, A., Due-Tønnessen, P.,
Grydeland, H., Hagler, D.J., Håberg, A.K., Kremen, W.S., Ferschmann, L., Nyberg, L.,
Panizzon, M.S., Rohani, D.A., Skranes, J., Storsve, A.B., Sølsnes, A.E., Tamnes, C.K.,
Thompson, W.K., Reuter, C., Dale, A.M., Fjell, A.M., 2016. Neurodevelopmental ori-
gins of lifespan changes in brain and cognition. Proc. Natl. Acad. Sci. USA 113, 9357–
9362. doi: 10.1073/pnas.1524259113 . 

enger, E., Mårtensson, J., Noack, H., Bodammer, N.C., Kühn, S., Schaefer, S.,
Heinze, H.-.J., Düzel, E., Bäckman, L., Lindenberger, U., Lövdén, M., 2014. Com-
paring manual and automatic segmentation of hippocampal volumes: reliability and
validity issues in younger and older brains. Hum. Brain Mapp. 35, 4236–4248.
doi: 10.1002/hbm.22473 . 

ickham, H. , 2016. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New
York . 

ickham, H., François, R., Henry, L., Müller, K., 2020. Dplyr: a grammar of data manip-
ulation. 

ilke, C.O., 2019. Cowplot: streamlined plot theme and plot annotations for “ggplot2. ”
onderlick, J., Ziegler, D., Hosseinivarnamkhasti, P., Locascio, J., Bakkour, A., Van-

derkouwe, A., Triantafyllou, C., Corkin, S., Dickerson, B., 2009. Reliability of
MRI-derived cortical and subcortical morphometric measures: effects of pulse
sequence, voxel geometry, and parallel imaging. Neuroimage 44, 1324–1333.
doi: 10.1016/j.neuroimage.2008.10.037 . 

ood, S.N. , 2017. Generalized Additive Models: An Introduction With R, 2nd ed. Chapman
and Hall/CRC . 

orker, A., Dima, D., Combes, A., Crum, W.R., Streffer, J., Einstein, S., Mehta, M.A.,
Barker, G.J., Williams, S.C.R., O’daly, O., 2018. Test-retest reliability and lon-
gitudinal analysis of automated hippocampal subregion volumes in healthy age-
ing and Alzheimer’s disease populations. Hum. Brain Mapp. 39, 1743–1754.
doi: 10.1002/hbm.23948 . 

endiki, A., Koldewyn, K., Kakunoori, S., Kanwisher, N., Fischl, B., 2014. Spurious group
differences due to head motion in a diffusion MRI study. Neuroimage 88, 79–90.
doi: 10.1016/j.neuroimage.2013.11.027 . 

https://doi.org/10.1016/j.neuroimage.2014.01.058
https://doi.org/10.1523/JNEUROSCI.1242-09.2009
https://doi.org/10.1016/j.neuroimage.2016.09.011
https://doi.org/10.1007/978-3-642-40811-3_91
http://refhub.elsevier.com/S1053-8119(21)00390-6/sbref0025
https://doi.org/10.1016/j.neuroimage.2011.02.076
https://doi.org/10.1016/j.neuroimage.2010.07.020
https://doi.org/10.1016/j.neuroimage.2012.02.084
https://doi.org/10.1016/j.neuroimage.2016.01.038
https://doi.org/10.1038/s41398-020-0705-1
https://doi.org/10.1109/TMI.2008.2010434
https://doi.org/10.1016/j.eurpsy.2017.12.006
https://doi.org/10.1073/pnas.1524259113
https://doi.org/10.1002/hbm.22473
http://refhub.elsevier.com/S1053-8119(21)00390-6/sbref0037
http://refhub.elsevier.com/S1053-8119(21)00390-6/sbref0037
https://doi.org/10.1016/j.neuroimage.2008.10.037
http://refhub.elsevier.com/S1053-8119(21)00390-6/sbref0041
http://refhub.elsevier.com/S1053-8119(21)00390-6/sbref0041
https://doi.org/10.1002/hbm.23948
https://doi.org/10.1016/j.neuroimage.2013.11.027

	Reliability and sensitivity of two whole-brain segmentation approaches included in FreeSurfer - ASEG and SAMSEG
	1 Introduction
	2 Materials and methods
	2.1 Datasets
	2.1.1 Lifespan scan-rescan dataset
	2.1.2 Inter-scanner dataset
	2.1.3 Lifespan longitudinal datasets
	2.1.4 Clinical sensitivity dataset

	2.3 MRI processing
	2.4 Statistical analysis
	2.4.1 Scan-rescan reliability
	2.4.2 Sensitivity to longitudinal change


	3 Results
	3.1 Scan-rescan reliability
	3.2 Inter-scanner differences
	3.3 Longitudinal changes
	Clinical sensitivity

	4 Discussion
	Conclusions
	Data and code availability
	Author credit statement
	Acknowledgement
	Appendix A
	References


